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Abstract 

Traditionally, economics has focussed primarily on explaining what and how 

much consumers will wish to purchase, paying little attention to the space in 

which these transactions take place.  In this paper I explore the behaviour that 

consumers make when deciding where they purchase goods, and provide a 

theoretical justification for possible inconsistencies in these decisions.  The 

inconsistency discussed hereafter is that of time-inconsistency, when the 

consumer makes contrasting decisions at different points in time, despite being 

faced with identical choices.  In the context of the 2-firm, 2-good model proposed 

in this paper, time-inconsistency constitutes two possible outcomes: 1. when the 

consumer plans to shop at a single firm, but after travelling to said firm, changes 

their mind and chooses to shop at both; or 2. they plan to purchase goods at both 

firms, but change their mind at the initially visited firm, and do not undertake the 

extra travel to the other firm.  I find that how consumers value their time entirely 

determines which outcome is realised.  If the consumer’s disutility of time 

function is strictly convex, only the former outcome can happen.  If the 

consumer’s disutility of time function is strictly concave, only the latter outcome 

can happen.  If they have linear disutility of time, no time-inconsistency can ever 

occur.  I finish the paper with an application to an experiment conducted by 

Kahneman and Tversky (1981).   
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1. Introduction and literature review 

Shopping may be becoming increasingly online, but consumers are still being 

posed with the problem, not of what to buy, but of where to purchase goods.  

Regularly, consumers know what they want to buy, but then need to decide which 

firm is best to shop at.  Take, for example, grocery shopping: one may have a 

corner shop very nearby and a large supermarket further away.  The corner shop 

is clearly convenient, but it is also likely more expensive than the supermarket.  

The consumer must weigh the time savings of the corner shop against the 

expenditure savings of the supermarket.  If they know that the corner shop is 

actually cheaper for some items but more expensive for others, they may even 

choose to shop at both stores, in order to minimise their expenditure, even though 

this requires more time.   

Humans are not completely rational beings though, particularly when failing to 

make consistent decisions over time.  It has been well documented that humans 

can often exhibit time-inconsistent behaviour across a range of scenarios (Thaler, 

1981) (Benzion, et al., 1989) (Redelmeier & Heller, 1993).  In the context of 

spatial consumption, a consumer may plan to only shop at the supermarket, with 

it being generally cheaper, but then after getting there may make the decision to 

also go to the corner shop.  This takes more time, but they may save money on a 

few items.  They already knew this though.  The only difference is the time at 

which they made the decision, but they changed their mind anyway.  This is the 

kind of inconsistent behaviour that I will model in this paper, focussing 

exclusively on the situations where the consumer may alter their choice of firm to 

shop at.  I will not model inconsistencies in what the consumer wishes to 

purchase, nor how much they wish to purchase.  The consumption bundle will be 

fixed, explicitly assuming that the consumer will not change this at any time.   

The previous research on spatial economics focuses mainly on production and 

agglomeration.  Alonso’s (1964) Monocentric City model and the subsequent 

Polycentric models (Fujita & Ogawa, 1982) and new economic geography 

(Krugman, 1991a) (1991b) (Fujita, 1993) all attempt to explain the spatial 

distribution of firms and households within towns, cities and regions, but do not 

explain the individual decision-making processes in economic activities.   

There has been considerable research regarding the firm side of this problem.  In 

both Hotelling’s (1929) linear model and Salop’s (1979) circular model it is 

assumed that consumers are spatially distributed along a unit line and around a 

circle respectively, but they focus on the firms’ location problem, and less on the 

consumer.  Gupta, Pal and Sarkar (1997) explained how similar firms tend to 

agglomerate if they compete on quantity but will disperse if they compete on 
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prices, using location as a form of product differentiation.  Lederer and Hurter 

(1986) present a spatial model of a Bertrand duopoly with a distribution of 

consumers only consuming a sole unit of a single good at the lowest price possible.   

Previous research, however, gives little consideration to the consumers’ choice 

problem, in relation to the consumption of goods and services, at the individual 

level.  Early work on spatial consumer choice by Christaller (1933) assumed that 

consumers shop at the closest store, but research by Craig, Ghosh and McLafferty  

(1984) has violated this assumption.  Their work suggests that consumers may 

prefer a store which is further away, if they are compensated for the extra travel.   

There is extensive research and evidence for time-inconsistent behaviour, it 

mostly concerns the issues of what people buy, comparisons of monetary rewards, 

and typical self-control problems of effort and procrastination.  There is 

surprisingly little application to decisions of where one may choose to travel.  

Osogami and Morimura (2012) assess the issue of time-consistency in travel 

decisions, where the agent must choose a route from one node to another but the 

travel times between nodes are stochastic, due to uncertain traffic density.  

Although this model is very different to that which I propose in this paper, the 

authors do highlight how an agent’s decision may change as they follow their 

planned route, and how this changes depending on the shape of the objective 

function used.   

The model used in this paper combines the economic concepts of cost 

minimisation and utility functions with networks, primarily used in decision 

mathematics, to create a spatial consumption model into which I will induce 

time-inconsistent behaviour.   

The rest of the paper is organised as follows.  In section 2 the model is formally 

presented, and an important graphical interpretation is provided and explained.  

In section 3 the concept of time-inconsistency within the context of the model is 

addressed.  Throughout this section the effect of the functional form of the 

disutility function on time-inconsistent behaviour is shown.  Section 4 relates to 

a criticism of this model regarding an experiment conducted by Kahneman and 

Tversky (1981), and a suggestion for how the model can be adjusted to assuage 

these concerns.  In section 5 final conclusions are presented with possible 

avenues for future research on this topic.   

2. The model 

Before delving fully into the model, I must first explain the concept of the 

disutility of time, and how it is defined throughout this paper.  According to 

economists, everything has value, and everyone has their own individual 
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valuation of everything.  ‘Everything’ is clearly not limited to goods and services, 

but must include the air we breathe, the environment, our health, the health and 

happiness of others, and many, many more things, such as time.  Time has value 

in a similar way to how money has value, it comes from what you can do with it.  

Traditionally, the value of time is equated to what one must give up to gain a 

marginal unit of it: the opportunity cost of time.  In most models, the opportunity 

cost of leisure time is the wage rate, as people’s time is only divided into leisure 

time and labour time.    

One could argue that time spent shopping should be part of leisure time as it can 

be seen as a leisure activity, however for rather mundane purchases, such as 

groceries, one could argue that it should be separate.  In this paper the latter is 

assumed, based on the assumption that a consumer is unlikely to reduce their 

working hours in order to shop, thus the opportunity cost of shopping, no matter 

how enjoyable, is the lost leisure that could be spent on more ‘traditional’ leisure 

activities, such as going to the cinema, meeting friends, or playing sport.  

Alternatively, one can distinguish between two different types of shopping: 

shopping for necessities, which is unlikely to be a leisure activity; and shopping 

for luxuries, which can be included in leisure time.  In this case, the model solely 

focusses on the consumption of necessities, with the opportunity cost still equal 

to the marginal utility of leisure time, thus both definitions lead to equivalent 

values of shopping time.  It is also assumed that the consumer will always prefer 

leisure time to shopping time, meaning that the marginal utility of shopping time 

is always negative.  It will therefore be optimal to minimise the time spent 

shopping, subject to the constraint that they must purchase their desired goods.   

To model these preferences, I introduce various disutility functions for shopping 

time (hereafter referred to as just time, for simplicity).  These functions map time 

to disutility (hereafter referred to as the time cost), and their differing shapes 

prove very important in determining whether the consumer is time-consistent.  

These functions, and their intuition, are elaborated in section 3, so what follows 

is the explanation of the core of the model.   

In addition to the time cost, I identify another cost, the ‘direct’ cost, which is the 

disutility from giving up money to pay for the goods.  Throughout this paper, I 

assume unit marginal utility of money, which implies that the direct costs are 

equal to the expenditure on the goods.   

To the end of simplicity, assume a sole consumer with a ‘shopping list’ consisting 

of only 2 products, 𝑥1 and 𝑥2, and they have 2 firms to choose between, 1 and 2.  

These goods are homogenous across both firms, and it is assumed that there are 

no external factors, such as customer service or brand loyalty, that may affect the 



4 
 

consumer’s decision.  This ensures that the only factors affecting the decision of 

the consumer are the prices and the time costs.   

The times are made up of three different time expenditures: travelling between 

home and the firms (denoted as 𝜃1 𝑎𝑛𝑑 𝜃2 for firm 1 and 2 respectively); 

travelling between firms (denoted as 𝜙); and shopping at the firms (denoted as 

𝑠1 𝑎𝑛𝑑 𝑠2).  For additional simplicity assume the shopping time to be equal at 

both firms (𝑠1 = 𝑠2 = 𝑠), which one may expect in similarly sized stores with 

similar products1.  As there are only two firms, there are only three possible times, 

reflecting only three possible routes that the consumer can take: 

I. They buy both goods from firm 1, only incurring the costs of traveling to 

and from firm 1; 

II. They buy both goods from firm 2, only incurring the costs of traveling to 

and from firm 2; 

III. They buy one good from each firm, thus incurring the cost to firm 1, from 

firm 1 to firm 2, and from firm 2 to home, or the opposite direction which 

is the same time.   

Given the above specifications, the components to the model are characterised as 

follows: 

𝑋 = [
𝑥1

1 𝑥1
2

𝑥2
1 𝑥2

2] where 𝑥𝑖
𝑗
 is the quantity of good i bought at firm j; 

𝑋̅ = [ 
𝑥1̅̅̅
𝑥2̅̅ ̅

 ] where 𝑥𝑖̅ = 𝑥𝑖
1 + 𝑥𝑖

2 for 𝑖 = 1,2; 

𝑃 = [
𝑝1

1 𝑝1
2

𝑝2
1 𝑝2

2] where 𝑝𝑖
𝑗
 is the price of good i bought at firm j; 

Θ = [𝜃1

𝜃2] where 𝜃𝑗 is the time taken to travel between home and firm j; 

𝑠 is the time taken shopping at either firm; 

𝜙 is the time taken to travel between firms 1 and 2; 

𝑡 = 𝜏(𝑋) where 𝜏 maps the consumption decision 𝑋 (i.e. which firms to go to) into 

a total time variable 𝑡;  

 
 

1 Although this is less realistic if one store is far larger or busier than the other, for example.   
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Firstly, the ‘direct’ costs are simply the total expenditure (e): 

𝐶𝑃(𝑋) = 𝑒(𝑋) = (𝑥1
1𝑝1

1 + 𝑥2
1𝑝2

1 + 𝑥1
2𝑝1

2 + 𝑥2
2𝑝2

2) (1) 

We can simplify this further as, in the optimum, the agent will not spread the 

consumption of the same good over both firms.  Suppose the consumer goes to 

both firms to get all of 𝑥1 at firm 1 and some of 𝑥2 at firm 2, then it must be that 

𝑥2 is cheaper at firm 2 than at firm 1, thus it cannot be optimal to only buy some 

of 𝑥2 at firm 2 and the rest at firm 1.  Because the consumer must consume all of 

the two goods, 𝑥1
1 + 𝑥1

2 = 𝑥1̅̅̅ and 𝑥2
1 + 𝑥2

2 = 𝑥2̅̅ ̅, thus these terms can be substituted 

in for 𝑥1
2 and 𝑥2

2 to simplify the direct costs to: 

𝐶𝑃(𝑥1
1, 𝑥2

1) = 𝑒(𝑥1
1, 𝑥2

1) = 𝑥1
1(𝑝1

1 − 𝑝1
2) + 𝑥2

1(𝑝2
1 − 𝑝2

2) + 𝑥1̅̅̅𝑝1
2 + 𝑥2̅̅ ̅𝑝2

2 (2) 

This expression is slightly longer but has fewer choice variables and provides 

some interesting, but rather trivial, conclusions.  From the first term 

[𝑥1
1(𝑝1

1 − 𝑝1
2)], one can see that if 𝑝1

1 > 𝑝1
2, then to minimise 𝐶𝑃, the consumer will 

set 𝑥1
1 equal to the lowest possible value, zero.  The converse is also true: if 𝑝1

1 <

𝑝1
2, then the consumer will set 𝑥1

1 at the maximal value of 𝑥1̅̅̅.  Thus, for all values 

of 𝑝1
1 𝑎𝑛𝑑 𝑝1

2, 𝑥1
1 can optimally only equal 0 or 𝑥1̅̅̅.  If 𝑝1

1 = 𝑝1
2 then the direct cost 

of good 1 has no effect on the minimisation, as it will be constant at 𝑥1̅̅̅𝑝1
2 = 𝑥1̅̅̅𝑝1

1.  

This makes the consumer’s choice only based upon good 2, so it is optimal to only 

go to one firm.  The story is exactly the same for the second term too [𝑥2
1(𝑝2

1 − 𝑝2
2)], 

concerning the quantity of good 2.  Another possibility is that both firms have the 

same prices for both goods, then the direct cost function has no choice variables 

and is just constant [𝑥1̅̅̅𝑝1
2 + 𝑥2̅̅ ̅𝑝2

2].  In this case, the decision problem is simply a 

time cost minimisation.   

Secondly, it is immediately clear from I, II and III above that the 𝜏 function can 

only map 𝑋 to three different values of 𝑡, regardless of the price structure: 

I. 𝑡 = 𝜏(𝑥1̅̅̅, 𝑥2̅̅ ̅) = 2𝜃1 + 𝑠, if the consumer only goes to firm 1 (i.e. 𝑥1
1 =

𝑥1̅̅̅, 𝑥2
1 = 𝑥2̅̅ ̅, 𝑥1

2 = 0 𝑎𝑛𝑑 𝑥2
2 = 0); 

II. 𝑡 = 𝜏(0,0) = 2𝜃2 + 𝑠, if the consumer only goes to firm 2 (i.e. 𝑥1
1 = 0, 𝑥2

1 =

0, 𝑥1
2 = 𝑥1̅̅̅ 𝑎𝑛𝑑 𝑥2

2 = 𝑥2̅̅ ̅); 

III. 𝑡 = 𝜏(𝑥1̅̅̅, 0) = 𝜏(0, 𝑥2̅̅ ̅) = 𝜃1 + 𝜃2 + 2𝑠 + 𝜙, if the consumer goes to both 

firms in any way.   
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For now, it is assumed that the consumer’s disutility is linear in time, meaning 

that 𝐶𝑇(𝑥1
1, 𝑥2

1) = 𝑡.  This implies that there are only three possible time costs and 

they are equal to the three times listed above: 

I. 𝐶𝑇(𝑥1̅̅̅, 𝑥2̅̅ ̅) = 2𝜃1 + 𝑠, if the consumer only goes to firm 1; 

II. 𝐶𝑇(0,0) = 2𝜃2 + 𝑠, if the consumer only goes to firm 2; 

III. 𝐶𝑇(𝑥1̅̅̅, 0) = 𝐶𝑇(0, 𝑥2̅̅ ̅) = 𝜃1 + 𝜃2 + 2𝑠 + 𝜙 if the consumer goes to both 

firms.   

Both costs are combined to yield an expression for the total cost minimisation 

problem: 

min
𝑥1

1,𝑥2
1

𝐶(𝑥1
1, 𝑥2

1) = 𝐶𝑃(𝑥1
1, 𝑥2

1) + 𝐶𝑇(𝑥1
1, 𝑥2

1) (3) 

To solve this minimisation problem, one must understand that there are 4 

possible outcomes which the consumer should minimise, and then choose the 

lowest total cost.  Thus, it is assumed that the consumer employs a minimin 

strategy, first minimising the direct costs for each scenario, then choosing the 

lowest minimised cost scenario.  These costs are listed below (in the form of 

demand at firm 1 𝐶(𝑥1
1, 𝑥2

1)): 

𝐶(𝑥1̅̅̅,  𝑥2̅̅ ̅̅ ) = 𝑥1̅̅̅𝑝1
1 +  𝑥2̅̅ ̅̅ 𝑝2

1 + 2𝜃1 + 𝑠 (4) 

𝐶(0,0) = 𝑥1̅̅̅𝑝1
2 +  𝑥2̅̅ ̅̅ 𝑝2

2 + 2𝜃2 + 𝑠 (5) 

𝐶(𝑥1̅̅̅, 0) = 𝑥1̅̅̅𝑝1
1 + 𝑥2̅̅ ̅𝑝2

2 + 𝜃1 + 𝜃2 + 2𝑠 + 𝜙 (6) 

𝐶(0,  𝑥2̅̅ ̅̅ ) = 𝑥1̅̅̅𝑝1
2 + 𝑥2̅̅ ̅𝑝2

1 + 𝜃1 + 𝜃2 + 2𝑠 + 𝜙 (7) 

For clarity, equation (4) is where the consumer only goes to firm 1, (5) is when 

they only go to firm 2, (6) is when they buy good 1 from firm 1 and good 2 from 

firm 2, and (7) is when they buy good 1 from firm 2 and good 2 from firm 1.   

Note that the time costs are the same in (6) and (7), so these costs are easy to 

compare, as the consumer will just choose the lower direct cost.  This will mean 

that one of (6) and (7) can quickly be dismissed once the prices become known.   

For this model to provide some interesting insight, the effects of the time cost and 

prices on the decisions of the consumer must be assessed.  Due to the number of 

variables, there are many permutations, so it is easiest to assume something 

about the price structure and then see what this may imply.  First, it is known that 

for (6) or (7) to be optimal, one firm cannot be cheaper for both goods, thus if 
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𝑝1
1 < 𝑝1

2 𝑎𝑛𝑑 𝑝2
1 < 𝑝2

2, and vice versa, then the consumer will definitely only go to 

one firm.  Thus, these two possibilities are an ideal place to begin.   

Assume that 𝑝1
1 < 𝑝1

2 𝑎𝑛𝑑 𝑝2
1 < 𝑝2

2, this means that firm 1 is cheaper for both 

goods, thus the direct costs are minimised at firm 1.  This, however, does not 

mean that firm 1 will minimise total costs, as it may be further away.  To measure 

this, introduce the two price differentials 𝜀1 = 𝑝1
2 − 𝑝1

1 𝑎𝑛𝑑 𝜀2 = 𝑝2
2 − 𝑝2

1 (this 

format will be used throughout to show the difference in prices).  The above 

assumption on prices implies that 𝜀1, 𝜀2 > 0.  Subtracting one cost (5) from the 

other (4) yields an expression for the cost difference: 

∆𝐶 = 𝐶(𝑥1̅̅̅,  𝑥2̅̅ ̅̅ ) − 𝐶(0,0) = −(𝑥1̅̅̅𝜀1 +  𝑥2̅̅ ̅̅ 𝜀2) + 2(𝜃1 − 𝜃2) (8) 

Obviously, what is important is whether equation (8) is positive or negative, as 

this result will predict the behaviour of the consumer.  Equation (9) is a 

fundamental equation, as it shows the trade-off between time and money.   

∆𝐶 ⋛ 0 ⇔  2(𝜃1 − 𝜃2) ⋛ 𝑥1̅̅̅𝜀1 +  𝑥2̅̅ ̅̅ 𝜀2 (9) 

This is quite a simple result, the difference in costs is positive if the difference in 

time costs is larger than the difference in direct costs, and equal or negative if 

equal or smaller respectively.  Here, a positive ∆𝐶 implies that the consumer only 

shops at firm 2, as firm 1 must be so far away that the expenditure savings do not 

compensate for the time cost.  As it has been assumed that 𝜀1, 𝜀2 > 0, it is possible 

for ∆𝐶 < 0 even if 𝜃1 > 𝜃2, implying that the consumer may optimise by shopping 

at a store that is cheaper but farther away.   

The other similar situation is 𝑝1
1 > 𝑝1

2 𝑎𝑛𝑑 𝑝2
1 > 𝑝2

2, thus 𝜀1, 𝜀2 < 0.  This does not 

fundamentally change (8) or (9), only changing the assumption of the sign of the 

‘𝑥1̅̅̅𝜀1 +  𝑥2̅̅ ̅̅ 𝜀2’ term.   

In both cases, the difference in cost is simply determined by the difference in the 

expenditure differentials (𝑥1̅̅̅𝜀1 𝑎𝑛𝑑 𝑥2̅̅ ̅𝜀2) and the time differential (𝜃1 − 𝜃2).   

An interesting note here is that the difference in costs is not only dependent on 

the difference in the firms’ prices, but also on the quantity of goods the consumer 

demands.  As the consumer demands larger quantities of the goods the direct cost 

differential (𝑥1̅̅̅𝜀1 + 𝑥2̅̅ ̅𝜀2) gets larger, thus making ∆𝐶 smaller.  Therefore, as the 

quantities of goods demanded increases it is more likely that the consumer will 

shop at the cheaper firm.  Contrastingly, if they only want a small quantity of the 

goods, they are more likely to go to the closer firm with higher prices.  For 
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example, imagine one has a Tesco very nearby (within 5-minutes walking) and an 

Aldi further away (about a half-hour walk), and assume that Tesco is more 

expensive than Aldi for both goods.  Suppose that one is making simple jam 

sandwiches for oneself, so one only needs a small jar of jam and a small loaf of 

bread.  As the difference in direct costs will be small, one is probably more likely 

to go to Tesco, as the small monetary gain at Aldi does not compensate for the 

additional walking.  Now assume that one has loads of friends over one afternoon 

and everyone is eating jam sandwiches.  Much more bread and jam are needed, 

say 10 times as much of both.  This means that the direct cost differential is 10 

times larger.  Thus, the savings at Aldi may now compensate for walking six times 

further to shop there.   

These two situations are quite simple, as it is always a decision between going to 

one firm or the other.  In the other two situations the decision to be made is 

whether or not to mix consumption across both firms.   

Initially, assume that firm 1 is cheaper for good 1, and firm 2 is cheaper for good 

2: 𝑝1
1 < 𝑝1

2 𝑎𝑛𝑑 𝑝2
1 > 𝑝2

2 (𝜀1 > 0 𝑎𝑛𝑑 𝜀2 < 0).  This implies that the cost in (7) is 

necessarily higher than the cost in (6) [𝐶(0,  𝑥2̅̅ ̅̅ ) > 𝐶(𝑥1̅̅̅, 0)], thus (7) cannot be 

optimal and should2 play no part in the decision-making process of the consumer.  

This means that the consumer is really choosing between shopping only at firm 1 

(4) or 2 (5) or buying good 1 at firm 1 and good 2 at firm 2 (6).   

In essence, this is a decision between cost-minimising prices with higher time 

costs (6) and the minimum time costs at higher prices (1) or (2).  Because of this, 

only whichever of equations (1) and (2) imply the least total cost needs to be 

considered.  To this end, assume (without loss of generality) that shopping 

entirely at firm 1 is strictly preferred over shopping entirely at firm 2.  Using the 

results from (9), this implies that 2(𝜃1 − 𝜃2) < 𝑥1̅̅̅𝜀1 +  𝑥2̅̅ ̅̅ 𝜀2.   

Subtracting the firm 1 consumption cost (4) from the mixed consumption cost 

(6) gives: 

∆𝐶 = 𝐶(𝑥1̅̅̅, 0) − 𝐶(𝑥1̅̅̅, 𝑥2̅̅ ̅) = 𝑥2̅̅ ̅𝜀2 − 𝜃1 + 𝜃2 + 𝑠 + 𝜙 (10)  

∆𝐶 ⋛ 0 ⇔ (𝜃2 + 𝑠 + 𝜙) − 𝜃1  ⋛ −𝑥2̅̅ ̅𝜀2 (11) 

 
 

2 Although (7) cannot be optimal it may augment the consumer’s attitude toward (6), making it 
seem relatively better.  This framing effect could be tested for via experimental methods.   
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The intuition behind (11) is similar to that for (9), comparing direct cost savings 

(−𝑥2̅̅ ̅𝜀2) against the extra time cost [(𝜃2 + 𝑠 + 𝜙) − 𝜃1] of going to both firms.  A 

useful alternative to (11) is (11’): 

∆𝐶 ⋛ 0 ⇔  𝑥2̅̅ ̅𝑝2
2 + 𝜃2 + 𝑠 + 𝜙 ⋛ 𝑥2̅̅ ̅𝑝2

1 + 𝜃1 (11′) 

This equation states that for the consumer to go to both firms (∆𝐶 < 0) the cost 

of buying good 2 at firm 1 (𝑥2̅̅ ̅𝑝2
1) plus the cost of returning home (𝜃1) must exceed 

the cost of going to firm 2 (𝜙 + 𝑠), buying the good there (𝑥2̅̅ ̅𝑝2
2) and returning 

home (𝜃2).  Note that the cost of getting to firm 1 and buying good 1 

(𝑥1̅̅̅𝑝1
1 + 𝜃1 + 𝑠) has no effect in the decision as it is common in both costs.  If the 

consumer was making this decision whilst at firm 1, 𝑥1̅̅̅𝑝1
1 + 𝜃1 + 𝑠 is a sunk cost, 

so they should only consider minimising future costs they may incur.   

The assumption that buying both goods at firm 1 was cheaper than at firm 2 

changes the solution minimally:  ∆𝐶 = −𝑥1̅̅̅𝜀1 + 𝜃1 − 𝜃2 + 𝑠 + 𝜙, with the same 

intuition as before.  In fact, if the prices have this asymmetrical property, the 

consumer is guaranteed to go to the firm where the combined expenditure of 

buying both goods is lowest, the question is then whether it is beneficial to also 

go to the other firm.   

This final observation is important as it implies time-consistency: the timing of 

the decision has no effect on the outcome.  As will be shown in section 3, the 

implication of time-consistency is uniquely determined by linear preferences in 

time [𝐶𝑇(𝑥1
1, 𝑥2

1) = 𝑡].   

2.1 Graphing the model 

As is common in economics, it is preferable to visualise the model in order to 

provide better explanation and additional intuition.  Luckily, this model can be 

graphed quite easily using the concept of indifference.  Indifference in this model 

is whenever the difference in total costs is zero.  For example, if the sum of the 

direct costs and the time costs for only going to firm 1 is equal to the equivalent 

sum for only going to firm 2, then the consumer will be indifferent between only 

going to firm 1 and only going to firm 2, as they would incur exactly the same total 

cost.  This means that for every firm-choice the consumer can make we can plot 

an indifference curve.   

As both the times and prices are exogenously determined it is not clear which 

variables should be placed on the axes, and which should therefore be intercepts.  

One could assume that prices vary more than the times, as the distances between 

the consumer’s house and the firms are unlikely to change.  On the other hand, 
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changes in weather, heavy traffic, and disruptions to public transport etc, are 

likely to cause travelling times to change over the course of the day, and from one 

day to the next.  Despite this, the direct costs have been placed on the axes, with 

the time costs as intercepts.  This is because the model is based on cost 

differences, and as changes in travel times to each firm are likely positively 

correlated, these frequent changes in travel times should cancel3.  On the x-axis 

we put 𝑥1̅̅̅𝜀1 (= 𝑥1̅̅̅(𝑝1
2 − 𝑝1

1)) which is how much more expensive firm 2 is than 

firm 1 for good 1.  And, on the y-axis we similarly put 𝑥2̅̅ ̅𝜀2  (= 𝑥2̅̅ ̅(𝑝2
2 − 𝑝2

1)), which 

is how much more expensive firm 2 is than firm 1 for good 2.   

For illustrative purposes, it will be assumed throughout the rest of the paper that 

𝜃1 > 𝜃24.  Figure 1 shows two representations of the time information.   

Figure 1: Home-firm network 

On the left (a), we have a simple diagram showing the times taken to travel 

between the 3 locations the consumer will consider: Home; Firm 1; and Firm 2.  

Firstly, notice that the edge between Home and Firm 1 is longer than the edge 

between Home and Firm 2, as 𝜃1 > 𝜃2.  Nothing is assumed about the time 

between firms, 𝜙, relative to 𝜃1 𝑎𝑛𝑑 𝜃2.  𝜙 could be larger than both 𝜃1 𝑎𝑛𝑑 𝜃2, 

larger than 𝜃2 but smaller than 𝜃1, or smaller than both 𝜃1 𝑎𝑛𝑑 𝜃2.  Secondly, as 

(a) will always be depicted as a triangle, these times will satisfy the triangle 

 
 

3 This is a relatively weak reason for putting direct costs on the axes, and not the time costs, but if 
one were to inspect the indifference curve equations and figures that follow, one would agree that 
this is the easiest and most diagrammatically sympathetic configuration.  In truth, what is put on 
the axes does not matter, as long as the indifference curve equations are the same.  In fact, it may 
provide some interesting alternative intuition and insight into the model.   
4 One may question this assumption, but since the firms and goods are identical it does not matter 
which firm is further away.  It is not so interesting if the distance is the same, so one must be 
larger than the other, and I chose 𝜃1 > 𝜃2.   

𝜙 + 𝑠 

 

Firm 2 

Firm 1 Home 

H 

1 

2 

 

H 

 

𝜃2 

𝜃1 

𝜙 

𝜃1 + 𝑠 

𝜃2 + 𝑠 

𝜃1 

𝜃2 

(a) (b) 
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inequality5: 𝜃1 ≤ 𝜃2 + 𝜙, 𝜃2 ≤ 𝜃1 + 𝜙 and 𝜙 ≤ 𝜃2 + 𝜃1.  These equations will be 

referenced later for proving whether indifference curves are positive or negative.   

On the right (b), all the times have been collected into a network, representing 

the consumer’s possible routes from home and back to one or both firms.  The 

shopping times have been included prior to arriving at a firm on the assumption 

that it cannot be optimal to travel to a firm if they do not intend to shop there.  

This means that every time the consumer decides whether to go to a firm, they 

consider both the travel time and the extra shopping time.   

Evidently, from figure 1, the shortest route is to firm 2 only, which means that for 

the consumer to be indifferent between going only to firm 1 or only to firm 2, they 

must be compensated with lower prices in at least one good at firm 1.  Recall that 

the condition for firm 1 to be preferred is (𝜃1 − 𝜃2) < 𝑥1̅̅̅𝜀1 + 𝑥2̅̅ ̅𝜀2.  It follows that 

the consumer is indifferent when 2(𝜃1 − 𝜃2) = 𝑥1̅̅̅𝜀1 + 𝑥2̅̅ ̅𝜀2.  Rearranging yields 

the indifference curve: 

𝑥2̅̅ ̅𝜀2 = 2(𝜃1 − 𝜃2) − 𝑥1̅̅̅𝜀1 (12) 

 

 

 

 

 

 

 

 
 

5 There are three special cases: 𝜃1 = 𝜃2 + 𝜙, 𝜃2 = 𝜃1 + 𝜙 and 𝜙 = 𝜃2 + 𝜃1.  The diagrams for these 
will be straight lines and represent situations where the shortest route between the two most 
separated locations is via the other location.  For example, all locations lying on a straight road.   
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Figure 2: One-firm consumption map 

Equation (12) can be plotted in figure 2 to illustrate the consumer’s problem.  

Here, the difference in costs is defined as the cost of shopping entirely at firm 1 

minus the cost of shopping entirely at firm 2:  

∆𝐶 = 𝐶(𝑥1̅̅̅, 𝑥2̅̅ ̅) − 𝐶(0,0) = −(𝑥1̅̅̅𝜀1 + 𝑥2̅̅ ̅𝜀2) + 2(𝜃1 − 𝜃2) (13) 

This implies that if the consumer finds themselves anywhere in the shaded yellow 

section (above the indifference curve and where ∆𝐶 < 0), then it is cheaper to 

consume both goods at firm 1, instead of at firm 2.  In the green area (below the 

indifference curve and where ∆𝐶 > 0), it is cheaper to buy both goods at firm 2.  

Thus, in the yellow the consumer only shops at firm 1, and in the green they only 

shop at firm 2.  Clearly, the consumer’s decision cannot be known with certainty 

 Only buy from 
firm 1 

 Only buy from 
firm 2 

𝑥1̅̅̅𝜀1 

𝑥2̅̅ ̅𝜀2 

2(𝜃1 − 𝜃2) 

2(𝜃1 − 𝜃2) 

∆𝐶 < 0 

∆𝐶 > 0 

∆𝐶 = 0 
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if they lie on the indifference curve, but, as economists like to do, assume they 

pick at random, choosing each, on average, half the time.   

Next, consider the option of mixing consumption over both firms.  One known 

condition about mixing consumption is that both firms must have a lower price 

in one good.  This means that either 𝜀1 > 0 𝑎𝑛𝑑 𝜀2 < 0 (south-east quadrant) or 

𝜀1 < 0 𝑎𝑛𝑑 𝜀2 > 0 (north-west quadrant).  Start with the south-east quadrant of 

the graph.  As was previously mentioned, only the mixed cost and the lowest cost 

of only going to one firm need to be compared.  This means that there are two 

possibilities to consider: firm 1 is cheaper; or firm 2 is cheaper.  First, assume 

that firm 1 is cheaper; this means that 2(𝜃1 − 𝜃2) < 𝑥1̅̅̅𝜀1 + 𝑥2̅̅ ̅𝜀2, lying somewhere 

in the yellow area.  The difference in cost is:  

∆𝐶1̂ = 𝐶(𝑥1̅̅̅, 0) − 𝐶(𝑥1̅̅̅, 𝑥2̅̅ ̅) = 𝑥2̅̅ ̅𝜀2 − 𝜃1 + 𝜃2 + 𝑠 + 𝜙 (14) 

Notice that the hat added to the C, as to differentiate it from (13), and the added 

superscripts to differentiate this cost from the next, where firm 2 is the cheaper 

firm.  Setting (14) equal to zero gives another indifference curve: 

𝑥2̅̅ ̅𝜀2 = 𝜃1 − 𝜃2 − 𝑠 − 𝜙    𝑖𝑓    2(𝜃1 − 𝜃2) < 𝑥1̅̅̅𝜀1 + 𝑥2̅̅ ̅𝜀2 (15) 

It can be proven that 𝑥2̅̅ ̅𝜀2 is negative here by some simple logic: The time cost of 

getting from firm 1 directly back home (𝜃1) cannot be larger than the time cost of 

going home from firm 1 via firm 2 (𝜃2 + 𝜙), therefore 𝜃1 − (𝜃2 + 𝜙) < 0.  The 

triangle inequality rule can also be used, which states that 𝜃1 ≤ 𝜃2 + 𝜙.  Thus, 

subtracting 𝑠 from the left-hand side means that the inequality is strict6.  This is 

important as it supports the assumption that 𝜀2 < 0.   

Now assume the other case, where firm 2 is cheaper, thus the mixed cost is 

compared to the cost of shopping entirely at firm 2:   

∆𝐶2̂ = 𝐶(𝑥1̅̅̅, 0) − 𝐶(0, 0) = −𝑥1̅̅̅𝜀1 + 𝜃1 − 𝜃2 + 𝑠 + 𝜙 (16) 

Setting this equal to zero again yields the other segment of the indifference curve: 

𝑥1̅̅̅𝜀1 = 𝜃1 − 𝜃2 + 𝑠 + 𝜙    𝑖𝑓    2(𝜃1 − 𝜃2) > 𝑥1̅̅̅𝜀1 + 𝑥2̅̅ ̅𝜀2 (17) 

A similar logic (and the triangle rule) can be used to state that 𝜃2 < 𝜃1 + 𝑠 + 𝜙, 

therefore 𝑥1̅̅̅𝜀1 > 0, which also supports the assumption that 𝜀1 > 0.  Notice that 

 
 

6 The subtraction of ‘s’ here ensures that for indifference we must have 𝜀2 < 0 even in the extreme 
case where the triangle rule holds with equality.   
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if one were to add these two indifference curves together one would get the 

formula for the original indifference curve between consuming both goods at firm 

1 or firm 2.   

In the north-west quadrant, where 𝜀1 < 0 𝑎𝑛𝑑 𝜀2 > 0, the indifference curves are 

now easy to derive.  Using a similar method, first assume that firm 1 is the 

cheapest [2(𝜃1 − 𝜃2) < 𝑥1̅̅̅𝜀1 +  𝑥2̅̅ ̅̅ 𝜀2], thus:  

∆𝐶1̃ = 𝐶(0, 𝑥2̅̅ ̅) − 𝐶(𝑥1̅̅̅, 𝑥2̅̅ ̅) = 𝑥1̅̅̅𝜀1 − 𝜃1 + 𝜃2 + 𝑠 + 𝜙 (18) 

Setting the cost difference equal to zero yields this indifference curve: 

𝑥1̅̅̅𝜀1 = 𝜃1 − 𝜃2 − 𝑠 − 𝜙    𝑖𝑓    2(𝜃1 − 𝜃2) < 𝑥1̅̅̅𝜀1 + 𝑥2̅̅ ̅𝜀2 (19) 

Second, assume that firm 2 is cheaper [2(𝜃1 − 𝜃2) > 𝑥1̅̅̅𝜀1 + 𝑥2̅̅ ̅𝜀2], then:  

∆𝐶2̃ = 𝐶(0, 𝑥2̅̅ ̅) − 𝐶(0,0) = −𝑥2̅̅ ̅𝜀2 + 𝜃1 − 𝜃2 + 𝑠 + 𝜙 (20) 

Setting the cost difference equal to zero yields this indifference curve: 

𝑥2̅̅ ̅𝜀2 = 𝜃1 − 𝜃2 + 𝑠 + 𝜙    𝑖𝑓    2(𝜃1 − 𝜃2) < 𝑥1̅̅̅𝜀1 + 𝑥2̅̅ ̅𝜀2 (21) 

Plotting these indifference curves with that from figure 2 gives figure 3.   
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Figure 3: One-firm or two-firm consumption map 

Notice that the indifference curves are only defined under a given interval of 

𝑥1̅̅̅𝜀1 𝑎𝑛𝑑 𝑥2̅̅ ̅𝜀2, due to the differences in which firm is assumed the lowest cost.  

This also gives the indifference curves their rotated ‘L’ shape.  To explain why, 

assume that firm 1 is the cheaper overall, but only cheaper for good 1 and dearer 

in good 2.  This must be somewhere in the south-east quadrant and in the yellow 

shaded region above the diagonal indifference curve (12).  As explained earlier, 

the consumer will always go to firm 1, then they decide whether it is worthwhile 

to go to firm 2 also.  This means that the price difference for good 1 is irrelevant, 

as they benefit from it either way.  This is clear when one compares the costs 

between shopping only at firm 1 (4) and when buying good 1 at firm 1 and good 

2 at firm 2 (6).   

 Only buy 
from firm 1 

 Only buy 
from firm 2 

 Buy from 
both firms 

𝑥1̅̅̅𝜀1 

𝑥2̅̅ ̅𝜀2 

2(𝜃1 − 𝜃2) 

2(𝜃1 − 𝜃2) 
𝜃1 − 𝜃2 − 𝑠 − 𝜙 

𝜃1 − 𝜃2 + 𝑠 + 𝜙 

∆𝐶 < 0 

∆𝐶ሚ < 0 

∆𝐶 > 0 

∆𝐶መ < 0 
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The costs in (4) and (6) have common parts: the cost of going to firm 1 and buying 

good 1.  When the difference is taken, this cost cancels out, thus does not appear 

in (14).  Hence, the indifference curve segment is a horizontal line at  𝜃1 − 𝜃2 −

𝑠 − 𝜙.  This is important, as it shows that no matter how much 𝑥1̅̅̅𝜀1 may rise above 

the lower bound of the indifference curve, it will not change the difference in 

costs, and thus not change the decision.   

The blue and purple shaded areas could be separated into two halves to show the 

small difference in the decisions made.  In the blue area, good 1 is irrelevant to 

the decision in the top half, and good 2 is irrelevant in the bottom half, and in the 

purple area the converse is true; good 1 irrelevant below, good 2 irrelevant above.   

An important property is that neither horizontal nor vertical indifference curves 

can intersect their perpendicular axis at zero as long as 𝑠 > 0.  This is equivalent 

to 𝜃1 − 𝜃2 − 𝑠 − 𝜙 < 0 𝑎𝑛𝑑 𝜃1 − 𝜃2 + 𝑠 + 𝜙 > 0 ∀ 𝜃1, 𝜃2, 𝑠, 𝜙 ∈ ℝ++.  All variables 

here are in the set of strictly positive real numbers as they all represent times, and 

it would make little sense for any of them to be zero.   

What has been created in figure 3 is a useful tool for predicting consumer firm-

choice behaviour, given the time parameters and the price structure of the firms.  

It allows for easy assessment of how the choice may change if one firm lowers or 

raises their price for one or both goods.  It also highlights the importance of 

location, as a shift in any one of the time parameters can have a large impact.  For 

example, if firm 1 were to decide to relocate to a location closer to the consumer, 

this has the effect of shifting the indifference curves down and left.  This means 

that the area for which the consumer goes to firm 1 is larger, hence increasing the 

revenue for firm 1.   

 

 

 

3. Time-inconsistency 

The concept of time-inconsistency is a thoroughly well researched phenomenon 

in human behaviour, with applications to behavioural economics, contract 

theory, and monetary policy7.  In simple terms, time-inconsistent behaviour is 

 
 

7 Some influential and interesting papers are by Kydland and Prescott (1977), Laibson (1997) and 
Wong (2008).   



17 
 

when an economic agent (a consumer, firm, policymaker etc.) faced with exactly 

the same decision at two different points in time, makes two different choices.   

The concept is best explained with an example.  Suppose that one has an 

assignment due in a weeks’ time.  Now consider the proposed decision: either pay 

£10 to extend the deadline for an additional day; or pay nothing and the deadline 

is unchanged.  People will tend not to pay for the extension when asked initially, 

when they have a week to finish the assignment.  But when they are asked a day 

before the deadline, many; especially students; will decide to pay the £10 to get 

some more time.  This is an example where the mere passing of time has altered 

the agent’s decision.   

In the context of the model in this paper, time-inconsistency is a situation where 

the decision made before any traveling happens is different to a decision made 

once the consumer has incurred some travel cost.  In this paper, this will be 

restricted to two possible points in time: before they travel; and at the first firm 

they intend to shop at.  This means that any difference in the choices made at 

these two distinct times, is considered time-inconsistent behaviour.   

It should be noted that time-inconsistency does not necessarily imply 

irrationality.  One can explain the behaviour in the above example as a rational 

response to increasing scarcity of time as the deadline gets closer, thus the value 

of one extra day is higher one day before the deadline than a week before.   

This final observation is extremely relevant to time-inconsistency in this paper as 

one will find that such behaviour in this model is a result of the changing marginal 

cost of time.  It follows that time-inconsistent behaviour can only be present if the 

consumer’s disutility of time function has changing marginal cost of time8.  

However, this gives no information about how the marginal cost may change, and 

what effect this may have.  To assess this, three disutility functions are 

introduced: a quadratic function, a square root function, and a hyperbolic sine 

function (sinh).   

3.1 Quadratic and root disutility of time 

Thus far, it has been assumed that the cost of time is a linear function of time 

[𝐶𝑇(𝑥1
1, 𝑥2

1) = 𝑡], which gives costs of (4), (5), (6) and (7).  Firstly, assume that the 

 
 

8 Put simply, the disutility function cannot be linear.  This is in agreement with the 
aforementioned notion that linear disutility functions are the only functions that will exhibit time-
consistent behaviour, or all values of time.   
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cost function is simply the square of the time [𝐶𝑇
𝑄(𝑥1

1, 𝑥2
1) = 𝑡2].  Thus, the initial 

costs are (subscript denotes time period): 

𝐶1
𝑄(𝑥1̅̅̅, 𝑥2̅̅ ̅) = 𝑥1̅̅̅𝑝1

1 +  𝑥2̅̅ ̅̅ 𝑝2
1 + (2𝜃1 + 𝑠)2 (22) 

𝐶1
𝑄(0,0) = 𝑥1̅̅̅𝑝1

2 +  𝑥2̅̅ ̅̅ 𝑝2
2 + (2𝜃2 + 𝑠)2 (23) 

𝐶1
𝑄(𝑥1̅̅̅, 0) = 𝑥1̅̅̅𝑝1

1 + 𝑥2̅̅ ̅𝑝2
2 + (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2 (24) 

𝐶1
𝑄(0, 𝑥2̅̅ ̅) = 𝑥1̅̅̅𝑝1

2 + 𝑥2̅̅ ̅𝑝2
1 + (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2 (25) 

The cost difference curves are found the same way as before: 

• ∆𝐶1
𝑄 = 𝐶1

𝑄(𝑥1̅̅̅, 𝑥2̅̅ ̅) − 𝐶1
𝑄(0, 0) = −𝑥1̅̅̅𝜀1 − 𝑥2̅̅ ̅𝜀2 + (2𝜃1 + 𝑠)2 − (2𝜃2 + 𝑠)2 

∆𝐶1
𝑄 = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = (2𝜃1 + 𝑠)2 − (2𝜃2 + 𝑠)2 − 𝑥1̅̅̅𝜀1 (26) 

• ∆𝐶11
𝑄̂ = 𝐶1

𝑄(𝑥1̅̅̅, 0) − 𝐶1
𝑄(𝑥1̅̅̅, 𝑥2̅̅ ̅) = 𝑥2̅̅ ̅𝜀2 + (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2 − (2𝜃1 + 𝑠)2 

∆𝐶11
𝑄̂ = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = (2𝜃1 + 𝑠)2 − (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2 (27) 

• ∆𝐶12
𝑄̂ = 𝐶1

𝑄(𝑥1̅̅̅, 0) − 𝐶1
𝑄(0,0) = −𝑥1̅̅̅𝜀1 + (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2 − (2𝜃2 + 𝑠)2 

∆𝐶12
𝑄̂ = 0 ⟹ 𝑥1̅̅̅𝜀1 = (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2 − (2𝜃2 + 𝑠)2 (28) 

• ∆𝐶11
𝑄̃ = 𝐶1

𝑄(0, 𝑥2̅̅ ̅) − 𝐶1
𝑄(𝑥1̅̅̅, 𝑥2̅̅ ̅) = 𝑥1̅̅̅𝜀1 + (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2 − (2𝜃1 + 𝑠)2 

∆𝐶11
𝑄̃ = 0 ⟹ 𝑥1̅̅̅𝜀1 = (2𝜃1 + 𝑠)2 − (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2 (29) 

• ∆𝐶12
𝑄̃ = 𝐶1

𝑄(0, 𝑥2̅̅ ̅) − 𝐶1
𝑄(0,0) = −𝑥2̅̅ ̅𝜀2 + (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2 − (2𝜃2 + 𝑠)2 

∆𝐶12
𝑄̃ = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2 − (2𝜃2 + 𝑠)2 (30) 

These equations are similar to the linear case, but they have been scaled to reflect 

the quadratic nature of the time disutility function.  As time-inconsistency is of 

main concern, the indifference curves need to be calculated in the second period; 

that being after the consumer has shopped at their first-choice firm.  Note that if 

one firm is cheaper for both goods, then once at that firm, there is no incentive to 

go to the other one, which rules out time-inconsistency in the north-east and 

south-west quadrants.  Thus, in the second period there are only 4 possible cases: 

1. 𝜀1 > 0, 𝜀2 < 0 and firm 1 visited first 
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2. 𝜀1 > 0, 𝜀2 < 0 and firm 2 visited first 

3. 𝜀1 < 0, 𝜀2 > 0 and firm 1 visited first 

4. 𝜀1 < 0, 𝜀2 > 0 and firm 2 visited first 

Start with the first 2 cases, as they are in the same quadrant.   

1. Went to firm 1 first, so we assume that they have already bought good 1, 

as it is the good for which firm 1 is cheapest.  Thus, the sunk costs are 

𝑥1̅̅̅𝑝1
1 + 𝜃1 + 𝑠.  The decision is now between two costs: 

• 𝐶2
𝑄(𝑥1̅̅̅, 𝑥2̅̅ ̅) = 𝑥2̅̅ ̅𝑝2

1 + (𝜃1)2 

• 𝐶2
𝑄(𝑥1̅̅̅, 0) = 𝑥2̅̅ ̅𝑝2

2 + (𝜃2 + 𝑠 + 𝜙)2 

This then gives a cost difference of (subscripts are period then first firm): 

∆𝐶21
𝑄̂ = 𝐶2

𝑄(𝑥1̅̅̅, 𝑥2̅̅ ̅) − 𝐶2
𝑄(𝑥1̅̅̅, 0) = −𝑥2̅̅ ̅𝜀2 + (𝜃1)2 − (𝜃2 + 𝑠 + 𝜙)2 

∆𝐶21
𝑄̂ = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = (𝜃1)2 − (𝜃2 + 𝑠 + 𝜙)2 > (2𝜃1 + 𝑠)2 − (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2(31) 

As this is larger (absolutely smaller negative number, and due to the 

convexity of the utility function) than the 1st period indifference curve, 

there is an interval where the agent’s decisions would be time-inconsistent.   

2. Went to firm 2 first, so bought good 2 at firm 2, and sunk costs are 𝑥2̅̅ ̅𝑝2
2 +

𝜃2 + 𝑠.   

• 𝐶2
𝑄(0, 𝑥2̅̅ ̅) = 𝑥1̅̅̅𝑝1

1 + (𝜃1 + 𝑠 + 𝜙)2 

• 𝐶2
𝑄(0, 0) = 𝑥1̅̅̅𝑝1

2 + (𝜃2)2 

• ∆𝐶22
𝑄̂ = 𝐶2

𝑄(0, 0) − 𝐶2
𝑄(0,  𝑥2̅̅ ̅̅ ) = 𝑥1̅̅̅𝜀1 + (𝜃2)2 − (𝜃1 + 𝑠 + 𝜙)2 

∆𝐶22
𝑄̂ = 0 ⟹ 𝑥1̅̅̅𝜀1 = (𝜃1 + 𝑠 + 𝜙)2 − (𝜃2)2 < (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2 − (2𝜃2 + 𝑠)2(32) 

As this is smaller than the first period decision, there is an interval where 

the agent’s decision would be time-inconsistent also.   

The other 2 cases have exactly the same outcome, with:  

∆𝐶21
𝑄̃ = 0 ⟹  𝑥1̅̅̅̅ 𝜀1 = (𝜃1)2 − (𝜃2 + 𝑠 + 𝜙)2 > (2𝜃1 + 𝑠)2 − (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2(33) 

∆𝐶22
𝑄̃ = 0 ⟹  𝑥2̅̅ ̅̅ 𝜀2 = (𝜃1 + 𝑠 + 𝜙)2 − (𝜃2)2 < (𝜃1 + 𝜃2 + 2𝑠 + 𝜙)2 − (2𝜃2 + 𝑠)2(34) 

Before graphing the quadratic indifference curves, it is useful to calculate those 

for the root disutility function, so comparisons can be made between the graphs.  
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Luckily, the root indifference curves can be gained by simply replacing the square 

with a square root, thus every time will be to the power of ½ instead of 2.  This 

means that the root equivalent equations of (26) - (34) are: 

∆𝐶1
𝑅 = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = √2𝜃1 + 𝑠 − √2𝜃2 + 𝑠 − 𝑥1̅̅̅𝜀1 (35) 

∆𝐶11
𝑅̂ = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = √2𝜃1 + 𝑠 − √𝜃1 + 𝜃2 + 2𝑠 + 𝜙 (36) 

∆𝐶12
𝑅̂ = 0 ⟹ 𝑥1̅̅̅𝜀1 = √𝜃1 + 𝜃2 + 2𝑠 + 𝜙 − √2𝜃2 + 𝑠 (37) 

∆𝐶11
𝑅̃ = 0 ⟹ 𝑥1̅̅̅𝜀1 = √2𝜃1 + 𝑠 − √𝜃1 + 𝜃2 + 2𝑠 + 𝜙 (38) 

∆𝐶12
𝑅̃ = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = √𝜃1 + 𝜃2 + 2𝑠 + 𝜙 − √2𝜃2 + 𝑠 (39) 

∆𝐶21
𝑅̂ = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = √𝜃1 − √𝜃2 + 𝑠 + 𝜙 < √2𝜃1 + 𝑠 − √𝜃1 + 𝜃2 + 2𝑠 + 𝜙 (40) 

∆𝐶22
𝑅̂ = 0 ⟹ 𝑥1̅̅̅𝜀1 = √𝜃1 + 𝑠 + 𝜙 − √𝜃2 > √𝜃1 + 𝜃2 + 2𝑠 + 𝜙 − √2𝜃2 + 𝑠 (41) 

∆𝐶21
𝑅̃ = 0 ⟹ 𝑥1̅̅̅𝜀1 = √𝜃1 − √𝜃2 + 𝑠 + 𝜙 < √2𝜃1 + 𝑠 − √𝜃1 + 𝜃2 + 2𝑠 + 𝜙 (42) 

∆𝐶22
𝑅̃ = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = √𝜃1 + 𝑠 + 𝜙 − √𝜃2 > √𝜃1 + 𝜃2 + 2𝑠 + 𝜙 − √2𝜃2 + 𝑠 (43) 

Equations (26) – (34) have been plotted in figure 4, and (35) – (43) in figure 5.   



21 
 

 

 

Figure 4: Time-inconsistent consumption map (quadratic) 
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Figure 5: Time-inconsistent consumption map (root) 

In both figures 4 and 5 there are 2 distinct sets of (𝑥1̅̅̅𝜀1, 𝑥2̅̅ ̅𝜀2) pairs where the 

model predicts that the consumer will make a time-inconsistent decision.  

Concentrate on the north-west quadrant.  In figure 4, the red shaded area has 

encroached into both the yellow and green areas but not the purple.  This means 

that time-inconsistent behaviour can only be of the form where the consumer 

plans to go to only one firm, but reneges and goes to both.  In figure 5, the contrary 

is true: the red shaded area encroaches on the purple.  This means that the 

consumer will plan to go to both, but then renege at the first firm and not travel 

to the other.  The same can be said about the time-inconsistency in the south-east 

quadrants, as both figures are symmetrical around the line 𝑥2̅̅ ̅𝜀2 = 𝑥1̅̅̅𝜀1.   
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Both the quadratic and root disutility functions exhibit time-inconsistent 

behaviour, but figures 4 and 5 highlight how this behaviour can come in different 

forms.  In this model there are only two simple forms: travel-loving, where the 

consumer will travel further than originally planned (figure 4); and travel-averse, 

where the consumer travels less than planned (figure 5).  It follows that the form 

of time-inconsistency depends on whether the disutility function is convex or 

concave.   

The intuition behind this difference in behaviour lies in how the gradient of the 

disutility functions change between the 1st period, and in the 2nd period, after the 

1st period costs are sunk.  Take equations (29) and (33), which are the 1st and 2nd 

period vertical indifference curves in the north-west quadrant in figure 4.  With 

quadratic disutility of time the consumer is one who does not mind short journeys 

but increasingly dislikes travelling as they have to travel further.  This means that 

initially, when the travel time is at its largest, any difference in travel time 

between going to firm 1 and going to both firms (𝜃2 + 𝑠 + 𝜙 − 𝜃1) will have a large 

effect on the consumer’s welfare.  But, in the 2nd period they have incurred some 

travel time (𝜃1 + 𝑠) so both future travel times are smaller.  It must be then that 

the exact same difference in time has a smaller effect on welfare, as the consumer 

is less disliking of both travel costs.  This means that the consumer needs to be 

compensated more at firm 1 in order to not travel more than planned.  As 𝜀1 =

𝑝1
2 − 𝑝1

1, to be compensated more at firm 1 𝑥1̅̅̅𝜀1 needs to be larger.  As 𝑥1̅̅̅𝜀1 here 

is negative, it needs to be smaller in absolute value, which gives the interval for 

𝑥1̅̅̅𝜀1 where the consumer’s choices will be time-inconsistent.   

On the other hand, the root disutility function has the opposite intuition: the 

consumer relatively hates short journeys, but every extra minute of travelling 

does not make them that much worse off.  Think of the consumer as someone who 

hates having to leave the house for anything, but once out, does not mind 

travelling a little further.  It should be quite easy to see how this type of consumer 

is likely to plan to go to both firms but renege to only one firm (the 1st and 2nd 

period vertical indifference curves in the north-west quadrant in figure 5).  

Initially both costs are high (38), so the difference between the two has minimal 

effect: the cost saving at firm 2 only needs to be small, so 𝑥1̅̅̅𝜀1 needs to be small 

in absolute value.  After they travel to firm 1, both costs fall by 𝜃1 + 𝑠 (42), 

meaning that the difference between the two will have more of an impact, as the 

consumer will be relatively more averse to the extra travel.  This means that the 

consumer needs to be compensated more at firm 2 for the extra travel, thus 𝑥1̅̅̅𝜀1 
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needs to be even smaller, or absolutely larger.  This leads to the interval for 𝑥1̅̅̅𝜀1 

where the consumer reneges on going to both firms, and solely shops at firm 1.   

In this section, two specific functions have been used, the square which is strictly 

convex, and the square root which is strictly concave.  It follows that the intuition 

and the form of the time-inconsistency for the square function is exactly the same 

as any strictly convex disutility function, and similarly for the square root 

function and any strictly concave disutility function.  This is assuming that the 

disutility function is both strictly increasing and passes through the origin.  A 

proof of this can be found in the appendix, but the explanations above provide 

sufficient evidence that the convexity or concavity of the disutility function is the 

only cause of the time-inconsistency.   

3.2 Disutility functions with multiple forms of time-inconsistency 

It is entirely possible that the agent’s disutility may not be solely convex, linear or 

concave, but may in fact show any of these for different values of time cost.  As 

the function is assumed to be strictly increasing in time cost, then any quasi-

concave function may display changing time-inconsistent behaviour.   

A useful quasi-concave function is the hyperbolic sine function, as the point of 

inflection is at zero, thus a 𝑡 axis translation of the function is all that is needed to 

ensure that the point of inflection is at a strictly positive value of 𝑡.  This shift of 

the curve does lead to a negative disutility axis intercept, so the function must be 

translated up the disutility axis to ensure this to be zero.  The function is then 

generalized with a scalar factor, b.   

These three disutility functions and scaled square and square root functions are 

all shown in figure 69.   

 
 

9 Parameters are set at 𝑎 = 2, 𝑏 =
𝑎

sinh(𝑎)
=

2

sinh(2)
 and 𝑑 = 4, to ensure that all curves intersect at 

the same point (4, 4).   
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Figure 6: Different disutility functions 

• Linear: 𝐶𝑇 = 𝑓(𝑡) = 𝑡 

• Root (concave): 𝐶𝑇 = 𝑓(𝑡) = √𝑑𝑡 

• Quadratic (convex): 𝐶𝑇 = 𝑓(𝑡) = 𝑡2

𝑑⁄  

• Sinh (quasi-concave): 𝐶𝑇 = 𝑓(𝑡) = 𝑏[sinh(𝑡 − 𝑎) + sinh(𝑎)] 

• Asinh (quasi-concave): 𝐶𝑇 = 𝑓(𝑡) = 𝑎 + sinh−1 (
𝑡

𝑏
− sinh(𝑎)) 

The hyperbolic sine function above has first and second derivatives of: 

• 𝑓′(𝑡) = 𝑏 cosh(𝑡 − 𝑎) 

• 𝑓′′(𝑡) = 𝑏 sinh(𝑡 − 𝑎) 

This means that for all strictly positive values of a, the turning point of the sinh 

disutility function is at 𝑡 = 𝑎.  This means that theory predicts that the consumer 

would exhibit behaviour consistent with travel-averse time-inconsistency for all 

𝑡 ∈ (0, 𝑎), travel-loving time-inconsistency for all 𝑡 ∈ (𝑎, ∞), and no time-

inconsistency for 𝑡 = 𝑎.   

The inverse function is more complex, as the derivatives are not as simple:  

• 𝑓′(𝑡) =
1

𝑏
[(

1

𝑏
𝑡 − sinh(𝑎))

2

+ 1]
−1

2⁄

 

• 𝑓′′(𝑡) = −
𝑡

𝑏
−sinh(𝑎)

𝑏2 [(
1

𝑏
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2

+ 1]
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This implies that the point of inflection is at 𝑡 = 𝑏 sinh(𝑎).  In figure 6, both points 

of inflection are at 𝑡 = 2, which is also an intersection point of the curves.   

Of the two quasi-concave functions, the sinh function is the more likely to reflect 

the truth, as it echoes the physical restrictions on travel that humans have.  For 

this reason, only the sinh disutility function is used from now on.  It is an 

interesting function, as it encompasses the unwillingness to start travelling but 

the increasing willingness to travel a little further once out (with the concave 

section) and the unwillingness to travel long distances (with the convex section).  

This last point is why the sinh function provides an improvement to concave 

functions, as it provides an extra dimension of intuition.   

3.3 Quasi-concave disutility and the cost-indifference diagram 

One may notice that for strictly concave and strictly convex disutility functions 

only one form of time-inconsistency can occur.  This may not be the case for 

quasi-concave disutility functions, and definitely not for the sinh function.  This 

means that for small travel times one would expect only travel-averse time-

inconsistency, and for large travel times, only travel-loving time-inconsistency.  

But for some travel times, one may get contrasting forms of time-inconsistency 

on each axis.   

In addition, in figures 4 and 5 the intervals over which behaviour may be time-

inconsistent are not the same for both axes.  The absolute difference between the 

intersections on the positive intervals is larger than that on the negative.  In the 

north-west quadrant this means that the absolute difference in the indifference 

curves on the 𝑥2̅̅ ̅𝜀2 axis is larger than the absolute difference on the 𝑥1̅̅̅𝜀1 axis.   

This is due to two reasons: the assumption that 𝜃1 > 𝜃2 (if they were equal, then 

the equation holds with equality); and because the disutility functions are strictly 

concave and strictly convex.  This observation does not always hold with quasi-

concave disutility functions.   

To show how the square, square root and sinh disutility functions effect the time-

inconsistency as the travel times increase, introduce two equations for the 

difference in the 1st and 2nd period indifference curves for both axes in the north-

west quadrant.  On the 𝑥1̅̅̅𝜀1 axis the 1st period indifference curve is subtracted 

from the 2nd period indifference curve:  

𝑔(𝐱) = [𝑓(𝜃2 + 𝑠 + 𝜙) − 𝑓(𝜃1)] − [𝑓(𝜃1 + 𝜃2 + 2𝑠 + 𝜙) − 𝑓(2𝜃1 + 𝑠)] (44) 

but on the 𝑥2̅̅ ̅𝜀2 axis the opposite subtraction is performed: 
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ℎ(𝐱) = [𝑓(𝜃1 + 𝑠 + 𝜙) − 𝑓(𝜃2)] − [𝑓(𝜃1 + 𝜃2 + 2𝑠 + 𝜙) − 𝑓(2𝜃2 + 𝑠)] (45) 

where x is a vector of all the time cost variables and f is some increasing disutility 

function with 𝑓(0) = 0.  The difference in calculation may seem odd at first but it 

ensures that for both the square and square root functions the signs of the g and 

h functions are the same.  Thus, if f is concave, then one would expect both 

functions to be positive; if f is convex then both should be negative; and for the 

sinh function both will have positive and negative sections.   

For simplicity, it is convenient to assume some fixed ratio between all of the costs, 

and then express this function in terms of only one term.  For example, it may be 

reasonable to assume that 𝜃2 =
3

4
𝜃1 𝑎𝑛𝑑 𝑠 = 𝜙 =

1

2
𝜃1.  If 𝜃1 = 1 ℎ𝑜𝑢𝑟 then 𝜃2 =

45 𝑚𝑖𝑛𝑠 𝑎𝑛𝑑 𝑠 = 𝑡 = 30 𝑚𝑖𝑛𝑠, which could easily be a real-world scenario.  With 

these ratios, the g and h functions are:  

𝑔(𝜃1) = [𝑓 (
7

4
𝜃1) − 𝑓(𝜃1)] − [𝑓 (

13

4
𝜃1) − 𝑓 (

10

4
𝜃1)] (46) 

ℎ(𝜃1) = [𝑓(2𝜃1) − 𝑓 (
3

4
𝜃1)] − [𝑓 (

13

4
𝜃1) − 𝑓(2𝜃1)] (47) 

These functions are plotted for all three disutility functions, and for increasing 

𝜃1, in figures 7, 8 and 9.  

 

Figure 7: Quadratic disutility  
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Figure 8: Square root disutility 

 

 

Figure 9: Hyperbolic sine disutility 
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that the magnitude of the h function is larger than that of the g function at all 

points.  As discussed previously, this is because 𝜃1 is larger than 𝜃2, and both 

disutility functions are strictly concave or strictly convex.  These two points 

merely cement what was previously stated.   

There are three important observations to be made from figure 9.  Firstly, the 

functions are not identical, thus there must be intervals for which predicted 

behaviour is time-inconsistent.  Secondly, in contrast to figures 7 and 8, both 

curves have a positive interval and a negative one, specifically going from positive, 

implying travel-averse time-inconsistency, to negative, implying travel-loving 

time-inconsistency.  Thirdly, also contrasting with concave and convex disutility 

functions, neither curve is larger than the other for all positive 𝜃1, or alternatively 

there is a non-zero intersection of the g and h curves (at 𝜃1 = 1.195), which 

cannot happen for concave and convex disutility functions.   

To illustrate observation 3, take the 4 points on the graph where 𝜃1 =

0.75, 0.97, 1.1 𝑎𝑛𝑑 1.3.  For each value of 𝜃1, the north-west quadrant of the time-

indifference curve diagram is plotted, shown in figure 10.   

The implications are quite interesting.  For 𝜃1 = 0.75, one should see the usual 

travel-averse time-inconsistency consistent with a concave disutility function: 

both 2nd period indifference curves are of greater absolute value than that in the 

1st period, and the difference in 𝑥2̅̅ ̅𝜀2 (h function) is larger than the difference in 

𝑥1̅̅̅𝜀1 (g function).   

For 𝜃1 = 0.97, there is a mixture of travel-loving and travel-averse time-

inconsistency as h is positive and g is negative.  If the consumer plans to go to 

both stores but starts at firm 2 (𝑥2̅̅ ̅𝜀2 axis IC′s), then there is a chance they may 

renege and not go to firm 1 (travel-averse).  But if the consumer was only planning 

to go to firm 1 (𝑥1̅̅̅𝜀1 axis IC′s), then there is a chance that they may then choose 

to also go to firm 2 (travel-loving).   

As 𝜃1 grows past 1, both g and h functions are negative, thus only travel-loving 

time-inconsistent behaviour is exhibited by the consumer.  This is apparent for 

both 𝜃1 = 1.1 and 𝜃1 = 1.3, but where they differ is in the relative magnitude of 

time-inconsistency.  For 𝜃1 = 1.1 one can see from the interceptions of the 2nd 

period indifference curves with the diagonal indifference curve, that the 

difference between the 𝑥1̅̅̅𝜀1 axis indifference curves is larger than the difference 

in the 𝑥2̅̅ ̅𝜀2 axis indifference curves.  As the opposite is true for 𝜃1 = 1.3, it implies 
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that for 𝜃1 = 1.1 some of the costs lie in the concave section of the disutility 

function, and thus a full convex diagram is not realised until 𝜃1 rises further.   

In this section, it has been shown that any non-linear disutility of time function 

implies time-inconsistency.  In particular, if convex, the consumer is likely to 

travel further than planned; and if concave, not as far as planned.  The disutility 

function can also incorporate both forms of time-inconsistency with a quasi-

concave disutility function, such as the sinh function.  In the next section, a 

possible weakness of the model is explored.   



31 
 

 

 

Figure 10: Time-inconsistent consumption maps (sinh) 
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4. Model critique: An example from Kahneman and Tversky 

Experiments have been conducted to assess the effects of how choices are 

presented to agents on their decisions.  In ‘The Framing of Decisions and the 

Psychology of Choice’, Kahneman and Tversky (1981) assess the effect of frames 

on peoples’ choices by conducting several experiments. They find that these 

frames significantly affected the decisions made, providing evidence against the 

theory of rational choice.  The problem most pertinent to this model is problem 

10, outlined below.   

One group was offered the prices in parentheses, and the other offered the 

prices in square brackets.   

‘Problem 10: Imagine that you are about to purchase a jacket for ($125) 

[$15], and a calculator for ($15) [$125]. The calculator salesman 

informs you that the calculator you wish to buy is on sale for ($10) [$120] 

at the other branch of the store, located 20 minutes’ drive away. Would 

you make the trip to the other store?’ (p. 457) 

In their results, many more respondents made the extra trip to get the $5 discount 

when the price of the calculator was lower (68% to 29%).  This contradicts 

rationality as the saving and the overall expenditure are both identical, so there 

should be no difference in the proportion that are willing to travel further to save.  

Instead of weighing the $5 saving against the extra travel, people ignore the price 

of the jacket, thus the marginal effect is much larger when the calculator price is 

lower.  As the model in this paper is based on cost differences, it is assumed that 

consumers only care about the absolute difference in price and travel cost, and 

not about relative price differences.  This means that the model currently cannot 

predict the behaviour seen in the Kahneman and Tversky experiments, as the two 

scenarios will be considered identical.   

If one were to change the assumption on the utility of money, then the desired 

result can be achieved.  Instead of assuming unit marginal utility of money, which 

equates the direct costs to the expenditure (𝐶𝑃(𝑋) = 𝑒(𝑋) = (𝑥1
1𝑝1

1 + 𝑥2
1𝑝2

1 +

𝑥1
2𝑝1

2 + 𝑥2
2𝑝2

2)), assume some monotonically increasing expenditure cost function 

𝑉, where 𝑉(0) = 0 (𝐶𝑃(𝑋) = 𝑉(𝑋) = 𝑉[𝑥1
1𝑝1

1, 𝑥2
1𝑝2

1, 𝑥1
2𝑝1

2, 𝑥2
2𝑝2

2]).  If convex, this 

function is essentially the same as having a concave utility function for money, 

where money is some fixed income minus expenditure.  This is, of course, very 

oversimplified, as people do not gain much utility from holding money itself but 

from what they can do with it, such as purchasing other goods and services, now 

or in the future.  Including all the reasons for why one may hold money would 
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grossly clutter the model, and it may be likely that people are not thinking about 

these reasons either, only that they know that they prefer more money.   

This expenditure cost function can then be applied to problem 10 from 

Kahneman and Tversky.  Suppose the somewhat unrealistic disutility of direct 

costs function 𝑉(𝑋) = 𝑣(𝑥1
1𝑝1

1) + 𝑣(𝑥2
1𝑝2

1) + 𝑣(𝑥1
2𝑝1

2) + 𝑣(𝑥2
2𝑝2

2), where 𝑣 is 

increasing but strictly concave with 𝑣(0) = 0, then the disutilities are as follows:  

1. With the price of the jacket equal to $125 at both firms, and the price of 

the calculator at $15 at firm 1 and $10 at firm 2: 

o If the consumer stays at firm 1, 𝑉(𝑋) = 𝑣(125) + 𝑣(15) 

o If the consumer goes to firm 2, 𝑉(𝑋) = 𝑣(125) + 𝑣(10) 

▪ Thus ∆𝑉1 = 𝑣(15) − 𝑣(10) 

2. With the price of the jacket equal to $15 at both firms, and the price of the 

calculator at $125 at firm 1 and $120 at firm 2: 

o If the consumer stays at firm 1, 𝑉(𝑋) = 𝑣(15) + 𝑣(125) 

o If the consumer goes to firm 2, 𝑉(𝑋) = 𝑣(15) + 𝑣(120) 

▪ Thus ∆𝑉2 = 𝑣(125) − 𝑣(120) 

As 𝑣 is assumed increasing and strictly concave, it follows that ∆𝑉1 > ∆𝑉2.  As the 

travel costs are the same in both scenarios (𝐶𝑇 = 𝑓(20)), it follows that: 

∆𝐶1 = ∆𝑉1 − 𝑓(20) > ∆𝑉2 − 𝑓(20) = ∆𝐶2 (47) 

The two terms ∆𝐶1 and ∆𝐶2 are differences in total costs, thus if they are both 

negative then the consumer stays at firm 1 in both scenarios, and if both positive 

they incur the travel cost and go to firm 2 in both scenarios.  As ∆𝐶1 > ∆𝐶2, then 

there must exist a function 𝑣, where 𝑣(0) = 0, 𝑣′(𝑋) > 0 𝑎𝑛𝑑 𝑣′′(𝑋) < 0, such that 

∆𝐶1 > 0 > ∆𝐶2.  This would mean that in scenario one the consumer goes to firm 

2, but in scenario two they go to firm 1, supporting the findings in Kahneman and 

Tversky.   

Although this seems like a positive result, it only came about because the disutility 

of expenditure function is assumed concave, implying a convex utility of money 

function.  There is evidence both in support and against this notion, depending 

on the size of the prices (Monti, et al., 2005).  Therefore, it is unclear whether a 

convex utility of money function is realistic, and the efficacy of the model here is 

ambiguous at best.   
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5. Conclusion 

In this paper, I have presented a theoretical justification for time-inconsistent 

behaviour in regard to the choices that consumers make about where to purchase 

goods.  This allowed me to create the indifference curve diagrams presented 

throughout the paper, which predict where the consumer will shop for any given 

prices and travelling times.   

I then induced time-inconsistent behaviour with the use of non-linear disutility 

of time functions, each of which represents an alternative intuition on how 

consumers value their time.  I found that any non-linear disutility of time function 

would imply possible time-inconsistent behaviour, but that there are two discrete 

forms of time-inconsistency.  Convex disutility of time functions lead to travel-

loving time-inconsistency: traveling further than initially planned.  Conversely, 

concave disutility of time functions lead to travel-averse time-inconsistency: not 

traveling as far as initially planned.   

With these findings, it was important to assess the effect of a more realistic 

disutility function, hence the use of the quasi-concave hyperbolic sine function.  

The result of this is a consumer that exhibits primarily travel-averse time-

inconsistency at lower travel times, and travel-loving time-inconsistency at larger 

times.   

In the final section I highlighted a potential weakness in the model, relating to its 

inability to explain framing effects.  In order to match the results from Kahneman 

and Tversky’s experiments, unrealistic assumptions had to be made on the 

consumer’s utility of money functions.  For this reason, further research into 

frames and spatial time-inconsistency is needed.   

Penultimately, I would like to briefly offer some potential topics for future 

research.  Experimental evidence is the foremost important addition to this 

research.  Currently, this paper presents a model for predicting behaviour, but 

has no empirical merit until sufficient and reliable supporting evidence has been 

accumulated.  In addition, the model is quite simplistic, and struggles to explain 

other human inconsistencies, thus extensive development would be beneficial.  

Key avenues are alternative disutility of time and disutility of expenditure 

functions; particularly kinked functions, quasi-hyperbolic discounted functions, 

and functions inclusive of physical and psychological obstacles to travel.  In 

addition, introducing more firms and goods, including online shopping, relaxing 

certain simplifying assumptions and introducing strategic behaviour between the 

consumer and firm are all profitable suggestions.   
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Finally, the results in this paper will have important implications to 

understanding the costs of long travel times and the importance of a more equally 

distributed local economy.  As the model suggests that the vast majority of 

consumer will exhibit time-inconsistent behaviour, there is an implied cost.  This 

cost will be reduced with equally distributed improvements to infrastructure, 

such as roads, public transport and delivery services.    



36 
 

References 

Alonso, W., 1964. Location and Land Use. Cambridge(MA): Cambridge 

University Press. 

Benzion, U., Rapoport, A. & Yagil, J., 1989. Discount Rates Inferred ffrom 

Decisions: An Experimental Study. Management Science, 35(3), pp. 270-284. 

Christaller, W., 1933. Die Zentralen Orte in Suddeutschland. Jena: Fischer. 

Translated by C.W, Baskin (1966), Central Places in Southern Germany, 

Prentice-Hall, Englewood-Cliffs. 

Craig, C. S., Ghosh, A. & McLafferty, S., 1984. Models of the Retail Location 

Process: A Review. Journal of Retailing, 60(1), pp. 5-35. 

Fujita, M., 1993. Monopolistic competition and urban systems. European 

Economic Review, 37(2-3), pp. 308-315. 

Fujita, M. & Ogawa, H., 1982. Multiple equilibria and structural transition of non-

monocentric urban configurations. Regional Science and Urban Economics, 

12(2), pp. 161-196. 

Gupta, B., Pal, D. & Sarkar, J., 1997. Spatial Cournot competition and 

agglomeration in a model of location choice. Regional Science and Urban 

Economics, 27(3), pp. 261-282. 

Hotelling, H., 1929. Stability in Competition. The Economic Journal, Mar, 

39(153), pp. 41-57. 

Kahneman, D. & Tversky, A., 1981. The Framing of Decisions and the Psychology 

of Choice. Science, 211(4481), pp. 453-458. 

Krugman, P., 1991a. Increasing returns and economic geography. Journal of 

Political Economy, 99(3), pp. 483-499. 

Krugman, P., 1991b. Geography and Trade. Cambridge(MA): MIT Press. 

Kydland, F. E. & Prescott, E. C., 1977. Rules Rather than Discretion: The 

Inconsistency of Optimal Plans. Journal of Political Economy, June, 85(3), pp. 

473-492. 

Laibson, D., 1997. Golden eggs and hyperbolic discounting. Quarterly Journal of 

Economics, 112(2), pp. 443-477. 

Lederer, P. J. & Hurter, A. P., 1986. Competition of Firms: Discriminatory Pricing 

and Location. Econometrica, May, 54(3), pp. 623-640. 



37 
 

Monti, M., Grant, S. & Osherson, D., 2005. A note on concave utility functions. 

Mind & Society, 4(1), pp. 85-96. 

Osogami, T. & Morimura, T., 2012. Time-Consistency of Optimization Problems. 

Toronto, AAAI. 

Redelmeier, D. & Heller, D., 1993. Time Preference in Medical Decision Making 

and Cost - Effectiveness Analysis. Medical Decision Making, 13(3), pp. 212-217. 

Salop, S. C., 1979. Monopolistic Competition with Outside Goods. The Bell 

Journal of Economics, 10(1), pp. 141-156. 

Thaler, R., 1981. Some Empirical Evidence on Dynamic Inconsistency. 

Economics Letters, 8(3), pp. 201-207. 

Wong, W.-K., 2008. How much time-inconsistency is there and does it matter? 

Evidence on self-awareness, size, and effects. Journal of Economic Behavior & 

Organization, 68(3-4), pp. 645-656. 

 

  



38 
 

Appendix  

Instead of assuming a particular form for the time disutility function, assume it 

to be any function 𝑓|𝑡 ⟶ 𝐶𝑇 where: 

• 𝑓(0) = 0 

• 𝑓(∞) = ∞ 

• 𝑓′(𝑡) > 0 ∀𝑡 ∈ ℝ+  

Under these assumptions, the 1st and 2nd period cost indifference curves are:  

1st period: 

∆𝐶1
𝐹 = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = 𝑓(2𝜃1 + 𝑠) − 𝑓(2𝜃2 + 𝑠) − 𝑥1̅̅̅𝜀1 (𝐴1) 

∆𝐶11
𝐹̂ = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = 𝑓(2𝜃1 + 𝑠) − 𝑓(𝜃1 + 𝜃2 + 2𝑠 + 𝜙) < 0 (𝐴2) 

∆𝐶12
𝐹̂ = 0 ⟹ 𝑥1̅̅̅𝜀1 = 𝑓(𝜃1 + 𝜃2 + 2𝑠 + 𝜙) − 𝑓(2𝜃2 + 𝑠) > 0 (𝐴3) 

∆𝐶11
𝐹̃ = 0 ⟹ 𝑥1̅̅̅𝜀1 = 𝑓(2𝜃1 + 𝑠) − 𝑓(𝜃1 + 𝜃2 + 2𝑠 + 𝜙) < 0 (𝐴4) 

∆𝐶12
𝐹̃ = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = 𝑓(𝜃1 + 𝜃2 + 2𝑠 + 𝜙) − 𝑓(2𝜃2 + 𝑠) > 0 (𝐴5) 

2nd period: 

∆𝐶21
𝐹̂ = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = 𝑓(𝜃1) − 𝑓(𝜃2 + 𝑠 + 𝜙) < 0 (𝐴6) 

∆𝐶22
𝐹̂ = 0 ⟹ 𝑥1̅̅̅𝜀1 = 𝑓(𝜃1 + 𝑠 + 𝜙) − 𝑓(𝜃2) > 0 (𝐴7) 

∆𝐶21
𝐹̃ = 0 ⟹ 𝑥1̅̅̅𝜀1 = 𝑓(𝜃1) − 𝑓(𝜃2 + 𝑠 + 𝜙) < 0 (𝐴8) 

∆𝐶22
𝐹̃ = 0 ⟹ 𝑥2̅̅ ̅𝜀2 = 𝑓(𝜃1 + 𝑠 + 𝜙) − 𝑓(𝜃2) > 0 (𝐴9) 

Proposition 1: If f is convex, linear, or concave, then the time-inconsistent 

behaviour will be travel-loving, travel-neutral, or travel-averse, respectively.   

Firstly, an explanation of the three types of time-inconsistent behaviour is 

needed.  Travel-loving is characterised by behaviour where the agent may travel 

more than first planned, such as in figure 4.  Travel-neutral is when they travel 

no more or less than planned, thus this behaviour is time-consistent (figure 3).  

Travel-averse is the opposite of travel-loving, thus they travel less than planned, 

such as in figure 5.   

These expressions mean that it is sufficient to show that, for given shapes of the 

function f, it will yield a graph similar to the respective figures above (i.e. if 
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convex, then it should look like figure 4; if linear, then like figure 3; and if 

concave, then it should look like figure 5).   

As all these graphs will be symmetrical in the line 𝑥2̅̅ ̅𝜀2 = 𝑥1̅̅̅𝜀1, it is also sufficient 

to only check for one pair of cost indifference curves: either north-west or south 

east quadrant.   

Taking the north-west quadrant cost indifference equations for each period, one 

can compare the two intercepts: 

∆𝐶21
𝐹̃ = 0 ⇒ 𝑥1̅̅̅𝜀1 = 𝑓(𝜃1) − 𝑓(𝜃2 + 𝑠 + 𝜙)                                                      

⋛ 𝑓(2𝜃1 + 𝑠) − 𝑓(𝜃1 + 𝜃2 + 2𝑠 + 𝜙) = 𝑥1̅̅̅𝜀1 ⇐ ∆𝐶11
𝐹̃

= 0               (𝐴10) 

∆𝐶22
𝐹̃ = 0 ⇒ 𝑥2̅̅ ̅𝜀2 = 𝑓(𝜃1 + 𝑠 + 𝜙) − 𝑓(𝜃2)                                                      

⋛ 𝑓(𝜃1 + 𝜃2 + 2𝑠 + 𝜙) − 𝑓(2𝜃2 + 𝑠) = 𝑥2̅̅ ̅𝜀2 ⇐ ∆𝐶12
𝐹̃

= 0               (𝐴11) 

Notice that both (A10) and (A11) can be put into the form: 

∆𝐶21
𝐹̃ = 0 ⇒ 𝑥1̅̅̅𝜀1 = 𝑓(𝐴 − 𝑥) − 𝑓(𝐵 − 𝑥) ⋛ 𝑓(𝐴) − 𝑓(𝐵) = 𝑥1̅̅̅𝜀1 ⇐ ∆𝐶11

𝐹̃ = 0 (𝐴12) 

∆𝐶22
𝐹̃ = 0 ⇒ 𝑥2̅̅ ̅𝜀2 = 𝑓(𝐵 − 𝑦) − 𝑓(𝐶 − 𝑦) ⋛ 𝑓(𝐵) − 𝑓(𝐶) = 𝑥2̅̅ ̅𝜀2 ⇐ ∆𝐶12

𝐹̃ = 0 (𝐴13) 

With 𝐴 = 2𝜃1 + 𝑠, 𝐵 = 𝜃2 + 𝑠 + 𝜙, 𝐶 = 2𝜃2 + 𝑠, 𝑥 = 𝜃1 + 𝑠 and 𝑦 = 𝜃2 + 𝑠.  From 

earlier assumptions, B>A>C.  Rearranging and dividing by x and y respectively 

gives: 

∆𝐶21
𝐹̃ = 0 ⇒ 𝑥1̅̅̅𝜀1 =

𝑓(𝐵) − 𝑓(𝐵 − 𝑥)

𝑥
⋛

𝑓(𝐴) − 𝑓(𝐴 − 𝑥)

𝑥
= 𝑥1̅̅̅𝜀1 ⇐ ∆𝐶11

𝐹̃ = 0 (𝐴14) 

∆𝐶22
𝐹̃ = 0 ⇒ 𝑥2̅̅ ̅𝜀2 =

𝑓(𝐶) − 𝑓(𝐶 − 𝑦)

𝑦
⋛

𝑓(𝐵) − 𝑓(𝐵 − 𝑦)

𝑦
= 𝑥2̅̅ ̅𝜀2 ⇐ ∆𝐶12

𝐹̃ = 0 (𝐴15) 

One may notice that these are equations for two gradients, thus, as B>A>C: 

• If f is strictly convex, then 
𝑓(𝐵)−𝑓(𝐵−𝑥)

𝑥
>

𝑓(𝐴)−𝑓(𝐴−𝑥)

𝑥
 and 

𝑓(𝐶)−𝑓(𝐶−𝑦)

𝑦
<

𝑓(𝐵)−𝑓(𝐵−𝑦)

𝑦
, thus the indifference curve in the 2nd period is further left and 

higher than in the 1st period, implying time-inconsistent behaviour where 

the agent may travel more than planned.  Thus, convex disutility implies 

travel-loving time-inconsistency.   
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• If f is strictly concave, then  
𝑓(𝐵)−𝑓(𝐵−𝑥)

𝑥
<

𝑓(𝐴)−𝑓(𝐴−𝑥)

𝑥
 and 

𝑓(𝐶)−𝑓(𝐶−𝑦)

𝑦
>

𝑓(𝐵)−𝑓(𝐵−𝑦)

𝑦
, implying that the 2nd period time indifference curve is lower 

and further right than the 1st period curve, thus concave disutility implies 

travel-averse time-inconsistency.   

• If f is linear, then  
𝑓(𝐵)−𝑓(𝐵−𝑥)

𝑥
=

𝑓(𝐴)−𝑓(𝐴−𝑥)

𝑥
 and 

𝑓(𝐶)−𝑓(𝐶−𝑦)

𝑦
=

𝑓(𝐵)−𝑓(𝐵−𝑦)

𝑦
, 

which means that there is no time-inconsistency as the two indifference 

curves are identical.  ∎ 

 


